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Abstract—Knowledge of protein functions plays an important role in biology and medicine. With the rapid development of high-
throughput technologies, a huge number of proteins have been discovered. However, there are a great number of proteins without 
functional annotations. A protein usually has multiple functions and some functions or biological processes require interactions of 
a plurality of proteins. Additionally, Gene Ontology provides a useful classification for protein functions and contains more than 
40,000 terms. We propose a deep learning framework called DeepGOA to predict protein functions with protein sequences and 
protein-protein interaction (PPI) networks. For protein sequences, we extract two types of information: sequence semantic 
information and subsequence-based features. We use the word2vec technique to numerically represent protein sequences, and 
utilize a Bi-directional Long and Short Time Memory (Bi-LSTM) and multi-scale convolutional neural network (multi-scale CNN) to 
obtain the global and local semantic features of protein sequences, respectively. Additionally, we use the InterPro tool to scan 
protein sequences for extracting subsequence-based information, such as domains and motifs. Then, the information is plugged 
into a neural network to generate high-quality features. For the PPI network, the Deepwalk algorithm is applied to generate its 
embedding information of PPI. Then the two types of features are concatenated together to predict protein functions. To evaluate 
the performance of DeepGOA, several different evaluation methods and metrics are utilized. The experimental results show that 
DeepGOA outperforms DeepGO and BLAST. 

Index Terms—deep learning, protein function, protein-protein interaction, protein sequence, protein domain. 

——————————      —————————— 

1 INTRODUCTION

roteins perform specific functions in organisms and 
are virtually involved in various biological activities, 

such as body movement, metabolism, and structural sup-
port [1]. With the rapid development of high-throughput 
technologies, many protein databases have been available. 
However, there are a great number of proteins without 
functional annotations. For instance, only about 1% of pro-
teins have been confirmed with experiments and manually 
annotated in the UniProt database [2]. Protein functions 
are usually discovered via in vitro or in vivo experiments 
[3]. However, biological experimental methods are expen-
sive and time-consuming. Thus, it is a difficult task to de-
termine the functions of a huge number of unannotated 
proteins with experimental methods. 

In the past decades, a number of computational methods 
have been proposed to predict protein functions and could 

be classified into the following three categories. The first 
category of methods is sequence-based and the most fa-
mous and wildly used method is BLAST [4]. BLAST [4] as-
signs the functions of annotated proteins to unannotated 
proteins based on the homologous similarity of sequences. 
It has a disadvantage that this method can only be used to 
predict the function of proteins with high homologous 
similarity. In order to overcome this disadvantage, other 
sequence-based methods with additional biological infor-
mation have been proposed to predict protein functions. 
FFPred3 [5] predicts protein functions with the biological 
information of the secondary structures, transmembrane 
helices, intrinsically disordered regions, signal peptides, 
and other motifs. GOLabeler [6] is a recently developed 
method that improves the prediction of protein functions 
with a combination of diverse sequence-based features, 
such as 3-mer, protein domains, families, motifs, and bio-
physical properties. The second category of methods is fo-
cusing on phylogenomic and genomic information. Pro-
teins are translated from genes and the changes of protein 
functions are related to the changes of the physiologies in 
different species. Thus, SVD-phy [7] uses the singular 
value decomposition of phylogenetic profiles for the pro-
tein function prediction. SIFTER [8] improves the function 
annotation by a statistical model with the phylogenetic tree. 
TreeGrafter [9] annotates protein functions with phyloge-
netic tree data. In addition, with the development of high-
throughput microarray technology, there are methods that 
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use the gene expression data for the accurate protein func-
tion prediction [3, 10]. The third category of methods is 
predicting protein functions with other biological infor-
mation (do not contain protein sequences). Many proteins 
that have similar protein functions do not mean they have 
a similar sequence. As we know, many different types of 
biological information (e.g. PPI network, genetic interac-
tion, genomic context, and protein structure) have complex 
relationships with protein functions [11, 12]. Thus, these 
different types of biological information are applied to the 
prediction of protein functions. For example, a protein is 
not isolated, yet interact with other proteins to perform its 
functions in many situations. Therefore, several research-
ers [13-17] use a PPI network to predict protein functions. 
Moreover, there are methods that predict protein functions 
with multiple network information. NetGO [18] improves 
the protein function prediction by incorporating massive 
protein-protein network information. DeepNF [19] uses 
multimodal Deep Autoencoders to extract high-level fea-
tures of proteins from multiple heterogeneous interaction 
networks. 

In common, a huge number of researchers annotate pro-
tein functions with Gene Ontology (GO) [20]. GO has three 
major branches, biological processes (BP), molecular func-
tions (MF) and cellular components (CC). GO contains 
more than 40,000 terms and a lot of proteins have more 
than one function. It is infeasible to train a model for each 
GO term with traditional machine learning methods (e.g. 
Support Vector Machine (SVM) and Logistic regression). 
Recently, deep learning techniques have been extensively 
applied to several fields, such as computer vision, natural 
language processing, and speech recognition. Inspired by 
their success, some researchers use deep learning methods 
to identify protein functions to address this issue. DeepGO 
[21] presents a deep ontology-aware model for protein 
function prediction and achieves good results. It learns se-
quence features of proteins with convolutional neural net-
works and obtains topological features of the PPI network 
by using a network representation learning technique. 

Deep learning techniques have improved the perfor-
mance of some biological problems [22-26]. In this study, 
we present a novel deep learning framework called 
DeepGOA that predicts protein functions based on protein 
sequences and PPI networks.  Firstly, we generate the 
dense vectors of each amino acid code of each protein se-
quence by using the word2vec technique which is a re-
cently developed distribution representation technique. 
Secondly, in order to extract more effectively features of 
protein sequences, a single convolutional layer is replaced 
by a multi-scale convolutional layer which has a stronger 
ability to capture features than a single convolutional layer. 
Additionally, we extract global features of sequences with 
Bi-LSTM [27] before the multi-scale convolutional layer. 
Bi-LSTM [27] can capture the global features of protein se-
quences that can provide a preliminary processing result 
to the multi-scale convolutional layer. Protein subse-
quence-based information including protein domains and 
motifs plays an important role in predicting protein func-
tions. Thus, we obtain the subsequence-based information 

by InterPro [28] and represent the subsequence-based in-
formation with one-hot coding. Then the combination of 
diverse sequence-based features is fed into a fully con-
nected layer to generate sequence-based features. Thirdly, 
we use the Deepwalk algorithm to extract topological fea-
tures without hand-crafted feature vectors. Finally, the se-
quence-based features and topological features of the PPI 
network are combined to perform the task of the protein 
functions prediction. 

Before we present our method, we would like to discuss 
the difference between our method DeepGOA and the pre-
viously proposed approach DeepGO [21]. Firstly, DeepGO 
extracts k-mer features from protein sequences with one 
convolutional layer and ignores the global information of 
the whole sequence. In order to extract more effectively 
features of protein sequences, DeepGOA extracts global 
and multi-size local features of sequences with Bi-LSTM 
[27] and a multi-scale convolutional layer. In addition, 
DeepGOA obtains domains, families, and motifs from se-
quences by InterPro. Secondly, the PPI network used in 
DeepGO and DeepGOA is different. The PPI network used 
in DeepGO has 8,789,935 vertices and 11,586,695,610 edges. 
Such a big network has a lot of noise, which will bring neg-
ative effects for the prediction, increase the cost of compu-
tation. Here, we filter the proteins and their interactions if 
they are not included in Uniport. The filtered PPI network 
contains 354,687 vertices and 54,253,077 edges, which is 
much smaller than that of DeepGO.  Deepwalk is applied 
on the PPI network to extract the topological features with-
out hand-crafted feature vectors. In DeepGO, Neuro-sym-
bolic method is used.  

2 METHODS 
Our deep learning framework of DeepGOA proposed to 
predict protein functions is shown in Figure 1. This frame-
work includes the feature extraction and classification sec-
tions. 

 
2.1 Network Architecture 
In the feature extraction, DeepGOA first numerically rep-
resents protein sequences with the word2vec technique 
and uses one-hot coding to represent information of pro-
tein domains, families, motifs from InterPro. Second, 
DeepGOA extracts the global features and local features of 
sequences, with a Bi-LSTM [27] and a multi-scale convolu-
tional layer, respectively. Moreover, DeepGOA obtains 
high-quality features of protein domains, families, and mo-
tifs with a neural network. Then DeepGOA combines these 
subsequence-based features and generates sequence-based 
features. Additionally, DeepGOA uses the Deepwalk algo-
rithm to obtain topological features of the PPI network. Fi-
nally, a combination of the complex sequence-based fea-
tures and topological features of the PPI network is fed into 
the classification section of DeepGOA. 
2.2 Extracting sequence-based features 
This subsection discusses the various steps involved in fea-
ture extraction from protein sequences. 
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2.2.1 Numerical representation of the sequence via the 
word2vec technique 

Proteins consist of different kinds of amino acids and many 

amino acids have important biological functions. Tradi-
tional computational methods use one-hot coding to nu-
merically represent the inputs of amino acids. However,

Fig. 1. An overview of our proposed deep learning framework for identifying protein functions. 
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one-hot coding is sparse and cannot reflect the relationship 
between different kinds of amino acids. In recent years, the 
distribution representation technique has been rapidly de-
veloped in the field of natural language processing (NLP). 
The distribution representation technique uses a dense 
vector to represent a word, which can describe the seman-
tic distance between words to a certain extent. The 
Word2vec algorithm is one of the most classic models and 
widely used in various fields [29]. Inspired by the 
word2vec algorithm, we regard a protein sequence as a 
sentence and amino acid in the protein sequence as words 
and then use the word2vec algorithm to numerically rep-
resent amino acid codes. 

Firstly, the word2vec algorithm calculates the word fre-
quency of each word in the input text and selects the N 
words with the highest word frequency to form a vocabu-
lary. Then it generates a one-hot vector for each word in 
the input text and uses the one-hot vector as the input of 
the Skip-gram model [30] which predicts the probability of 
a word around the input word by maximizing the possibil-
ity of co-occurrence between words. After the training 
steps, we obtain an embedding vector for each word in the 
vocabulary. 

In our experiments, we regard a protein sequence as a 
sentence and each amino acid code as a word. We generate 
a dense vector of each amino acid code with the word2vec 
technique. The dense vectors of all amino acid codes of the 
sequence form a feature matrix of the sequence, which is 
treated as an image. As a result, we can use deep learning 
techniques to capture sequential features. 

 
2.2.2 Acquiring the global information of sequences with Bi-

LSTM 

The global information about the whole sequence plays an 
important role in the classification of protein functions. 
The multi-scale convolutional layer has little capacity to 
obtain long-range features of sequences with some small 
kernel sizes. If we increase the convolutional kernel size to 
get a larger receptive field, it generates noises when ad-
dressing short sequences and amino acid patterns. In addi-
tion, due to the length of the sequence is 1000, it is difficult 
to choose an appropriate convolution kernel size in the 
large range of the region. In order to overcome these limi-
tations, we first use Bi-LSTM [27], which is a variant of the 
recurrent neural network (RNN), to extract global features 
from protein sequences. 

RNN analyzes a text word by word and stores the se-
mantics of all the previous texts in a fixed-sized hidden 
layer [31]. An important advantage of the RNN is to utilize 
context information in the mapping process between input 
and output sequences. Unfortunately, the range of context 
information captured by standard RNNs is limited and 
there exists a vanishing gradient problem in the back-prop-
agation process. In order to solve this problem, some re-
searchers proposed the Long and Short Time Memory 
(LSTM) structure, an excellent variant of RNN, which in-
herits the characters of most RNN models and alleviates 
the vanishing gradient problem. LSTM only access to past 
contextual information and not to future information that 
is very beneficial for many sequence annotation tasks. 

Based on this idea, the Bi-LSTM [27] has been proposed, 
which provides complete past and future information for 
each point of the input sequence in the output layer. 

In order to capture past and future context information 
of protein sequences, the feature matrix of a sequence is fed 
to the Bi-LSTM [27] part. The hidden layer size is 64 and 
the number of hidden layers is 2. We set the dropout rate 
as 0.2 to avoid overfitting. 

 
2.2.3 Obtain more local features of sequences with Multi-

scale convolutional layer 

The local features of protein sequences are important for 
the prediction. Convolutional filters can be used to obtain 
local features and acquire more features with multi-layer 
stacking [32]. Previous studies use a single convolution 
kernel to extract features of protein sequences and work 
well. However, a single convolutional kernel cannot cap-
ture satisfactory features for classification. For instance, the 
length of the sequence and amino acid patterns with bio-
logical information are different. Thus, using a single fixed 
convolution kernel does not work well with protein se-
quences that have different lengths. In addition, due to the 
fixed input scale, the sequences whose length is less than 
the fixed length must be filled with zero which may intro-
duce noises for the prediction. To address these problems, 
we use multi-scale convolutional kernels to extract more 
effective local features. Besides, 1D max-pooling is applied 
to filter zero paddings. A multi-scale convolutional layer 
not only is suitable for sequences and the amino patterns 
with different lengths but also increases the diversity of lo-
cal features. It turns out that the multi-scale convolutional 
layer is more powerful than a single convolutional layer. 
For instance, TextCNN [33] uses a multi-scale convolu-
tional layer for the sentence classification, which outper-
forms a single convolutional layer and other deep learning 
structure. The convolutional kernels of our multi-scale 
convolutional layer are 13, 15, and 17, respectively, and the 
number of channels is 400. The convolutional layer is fol-
lowed by the 1D-max-pooling with the size of 1000. 

 
2.2.4 Obtain subsequence-based features 

Protein subsequence-based features are very important for 
the prediction of protein functions. In this study, we use 
the InterPro tool to obtain protein subsequence-based fea-
tures including protein domains and motifs. InterPro anal-
yses protein sequences according to diverse databases, in-
cluding CCD [34], Pfam [35], CATH-Gene3D [36], and SU-
PERFAMILY [37]. InterPro provides a useful tool called In-
terProScan which is a software package can be down-
loaded from the InterPro database. InterProScan can create 
a binary vector with 33,520-dimensional features that code 
the information of protein domains, families and motifs. In 
order to obtain non-linear features, the binary vector is fed 
into fully connected layers. Then we combine diverse se-
quence features and generate comprehensive and high-
quality protein features. 

2.3 Extracting PPI network topological features 
Networks have been widely used to model various biolog-
ical problems and network topological features are very 
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important in the study of biological prediction prob-
lems[38, 39]. ThrRW [11] predicts protein functions by us-
ing multiple random walks to extract network topological 
features. When a PPI network contains thousands or mil-
lions of nodes and edges, it is computationally expensive 
or even infeasible to extract topological features by using a 
random walk on the network. Thus some representation 
learning techniques have been proposed, including Deep-
walk [40], LINE [41], node2vec [42], HOPE [43], SiNE [44], 
SNE [45]. These methods are neural network-based ap-
proaches and their performances are better than traditional 
approaches, such as PCA [46] and MDS [47]. 

The Deepwalk algorithm is the first network embed-
ding method based on deep learning and the most popular 
method. The Deepwalk algorithm treats nodes as words 
and combines a random walk with the. Skip-gram model 
[30]. The first step of the Deepwalk algorithm is represent-
ing the input network with a matrix, such as an adjacency 
matrix or a Laplacian matrix. The second step is generating 
sequences of nodes with random walk. Finally, the Deep-
walk algorithm uses the Skip-gram model [30] to learn to 
embed nodes from sequence nodes. In our study, we uti-
lize the Deepwalk algorithm as the method for learning 
node embedding of the PPI network. In order to cover the 
adjacent vertices of each vertex as many as possible, we use 
a sampling method. The formula is as follows: 

(1 − 𝑝)௞ ≤ 𝛼                                  (1) 

where p is the ratio of vertices to edges. The left part of the 
formula represents the probability that one adjacent vertex 
of the vertex is not picked at least once after k iterations of 
random walks. When this probability is smaller than α, it is rea-
sonable to believe that all adjacent vertices of the vertex are cov-
ered. In this study, we set α as 0.1 and the approximate value 
of the walk number is 300. The walk-length, the window-
size, and the output vector size is 20, 10, and 256, respec-
tively. 

 

2.4 Assessment metrics 
In this study, we use Fmax, AvgPr, AvgRc, MCC (Mathews 
Correlation Coefficient), AUC (Area Under The Curve) to 
evaluate the performance of models [48, 49]. Fmax is a pro-
tein-centric maximum F-measure. AvgPr and AvgRc are 
the average precision and average recall for all proteins 
that have at least one GO term, respectively. They are cal-
culated as follows: 
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where f represents a GO term. When the threshold is t, Pi(t) 
and Ti are the set of predicted GO terms and the set of an-
notation GO terms for protein i, respectively. n is the num-
ber of all proteins and m(t) is the number of predicted pro-
teins with at least one GO term. TP and TN represent the 
numbers of the positive and negative terms of predicted 
proteins which are classified correctly, respectively. FP and 
FN represent the numbers of positive and negative terms 
of proteins which are misclassified, respectively. 

3 DATASETS 
In this study, we use the same datasets as the previous 
study [21]. Specifically, we use three datasets including 
training dataset, testing dataset and benchmark evaluation 
dataset. The training dataset contains 48,568 proteins and 
the testing dataset contains 12,142 proteins. These proteins 
have experimental evidence codes (EXP, IDA, IPI, IMP, IGI, 
IEP, TAS, and IC) and we ignore some proteins which con-
tain ambiguous amino acid codes (B, O, J, U, X, Z). The 
benchmark evaluation dataset is released as part of the 
CAFA3 competition. We train one model for each su-
bontology in GO. We select the top 589 terms of MF, 439 
terms of CC, and 932 terms of BP with the sorted order of 
GO classes, respectively.  

We construct a PPI network of multiple species from the 
STRING database [50]. In addition, we connect these pro-
teins with orthology relations from the EggNOG database 
[51]. We acquire the mapping relationship files provided 
by the STRING and SwissProt [2] databases, respectively. 

4 EXPERIMENTAL RESULTS 

4.1 Implemental Details 
In order to choose the best parameters, we also randomly 
select 20% proteins from the training dataset as the valida-
tion dataset. If a protein has a GO term in our selected 
terms, we assign 1 to the term’s position in the label vector 
and use it as a positive sample of the term. Otherwise, we 
assign 0. During training and testing processes, we use 
proteins that have at least one GO term in our selected 
terms. The InterProScan tool and the InterPro entry list are 
down-loaded from the InterPro database. The InterPro en-
try list contains 2,865 homologous super-families, 21,695 
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families, 9,268 domains, 280 repeats, and 912 sites. We se-
lect proteins that have the mapping relationship between 
the STRING and SwissProt and pick up interactions of se-
lected proteins whose confidence score is at least 300. Then 
we add the orthologous relations from the EggNOG data-
base for selected proteins. We combine selected proteins, 
PPIs and orthologous relations to construct the PPI net-
work, which contains 354,687 vertices, and 54,552,077 
edges. During training and testing processes, we assign a 
zero vector to those proteins without the embedding rep-
resentations. 

Our deep learning framework is implemented by 
Pytorch [52], a public deep learning framework developed 
by Facebook. The detail of the network structure is de-
scribed below. We use a grid search method to choose the 
parameters and structure of our method. Reasonable pa-
rameters and structures are clearly described as follows.  
Firstly, we generate a dense vector for each amino acid 
code with the word2vec technique. Then we represent each 
protein sequence with a feature matrix which is 1000x128. 
In addition, InterPro generates a 33,520-dimensional vec-
tor to represent features of protein domains, families and 
motifs. Secondly, we use the Deepwalk algorithm to gen-
erate a 256-dimensional vector to represent PPI features. 
The walk number, the walk-length and the window-size of 
Deepwalk are 20, 10, and 256, respectively. Thirdly, after 
trying different kernel sizes, we determine the kernel sizes 
of the multi-scale convolutional layer are 13x128, 15x128, 
and 17x128, respectively. The performance of different ker-
nel sizes of our model is provided in supplementary Table 
S1. The output size of the multi-scale CNN layer is 1000x1 
by using the zero-padding and the stride is 1. By using a 
multi-scale CNN layer, we obtain three feature maps that 
have 400 channels. The results of different hidden layer 
sizes of our model are provided in supplementary Table S2. 
We use two fully connected layers to extract high-quality 
features of protein domains, families and motifs. The num-
ber of neural units in the two fully connected layers is 1024 
and 512, respectively. The activation function of the two 
fully connected layers is the sigmoid function. Two kinds 
of sequence-based features are concatenated together as in-
put to a fully connected hidden layer for extracting high-
quality sequence-based features. On top of the fully con-
nected hidden layer, there is another fully connected hid-
den layer taking concatenated high-quality sequence-
based features and embedding vectors from the PPI net-
work as input. The detailed results of DeepGOA with dif-
ferent walk numbers are found in supplementary Table S3. 
We used a dropout rate of 0.2 on the fully connected layer 
in the network to avoid over-fitting. The output from the 
fully connected layer is fed into the prediction layer which 
performs the classification task. Finally, Adam optimizer is 
used to train our deep learning framework. The batch size 
is set to 128 and the initial learning rate is set to 0.002. 

4.2 Comparison with other methods 
To examine the performance of DeepGOA, we first com-

pare DeepGOA with BLAST [4] and DeepGO on the test-
ing dataset. To our best knowledge, DeepGO is the first 
method to use deep learning techniques with protein se-
quences and PPI networks. In this study, for a protein from 
the testing dataset, we use BLAST [4] to find the most sim-
ilar protein from the training dataset. Then we assign all 
GO terms of the most similar protein to it. Table 1 shows 
that DeepGOA achieves the best values in all assessment 
metrics on all branches. For example, in terms of Fmax, 
DeepGOA improves about 34.3% (BP), 85.9% (CC), 50.0% 
(MF) than BLAST, and about 6.8% (BP), 6.3% (CC), 18.7% 
(MF) than DeepGO. DeepGOA achieves the AUC of 0.906 
(BP), 0.976 (CC), 0.947 (MF), respectively, which is better 
than DeepGO (0.896, 0.967, 0.928). In terms of MCC meas-
ure, DeepGOA is also better than DeepGO in the BP, CC, 
and MF branches. The prediction of DeepGOA is available 
on this website (http://bioinformat-
ics.csu.edu.cn/DeepGOA/). 

We also compare DeepGOA with DeepGO and FFPred3 
[5] in previous CAFA challenges [53] on the benchmark 
evaluation dataset. All methods (DeepGOA, DeepGO, 
FFPred3) did not use protein annotations in the benchmark 
evaluation dataset during the training process. Table 2 
shows the performance of DeepGOA comparing with 
DeepGO, FFPred3, and Phylo-PFP on the benchmark eval-
uation dataset of CAFA3. In the CC branch, the perfor-
mance values of DeepGOA are 0.538 (Fmax), 0.582 (AvgPr), 
0.496 (AvgRc), 0.502 (MCC), 0.953 (AUC), respectively, 
which is about 21.4% (Fmax), 27.3% (AvgPr), 15.3% (AvgRc), 
28.1% (MCC), 6.7% (AUC) better than FFPred3. We find 
that DeepGOA and Phylo-PFP are better than FFPred3 and 
Deep GO in the MF branch. In terms of Fmax, the perfor-
mance value of Although Phylo-PFP is 0.539, which is bet-
ter than FFPred3 (0.376) and DeepGO (0.472). The results 
show that our method achieves state-of-the-art perfor-
mance. 

To discover the vital elements in the success of 
DeepGOA, we compare our model with component meth-
ods. The results are shown in Table 3. DeepGOA_Bi-LSTM 
[27] and DeepGOA_MultiCNN adopt Bi-LSTM [27] model 
and MultiCNN model with only protein sequences, re-
spectively. DeepGOA_Seq only uses protein sequences to 
predict protein functions with a combination of Bi-LSTM 
[27] and MultiCNN models. The input of the 
DeepGOA_PPI method is only from the PPI network and 
DeepGOA_InterPro only uses features from protein do-
mains, families, motifs to predict protein functions. 
DeepGOA_Seq_InterPro, DeepGOA_Seq_PPI and 
DeepGOA_InterPro_PPI are three independent methods 
that combine DeepGOA_Seq and DeepGOA_InterPro, 
DeepGOA_Seq and DeepGOA_PPI, and DeepGOA_In-
terPro and DeepGOA_PPI, respectively.   

First, we compare models only using sequence-based 
features as input. Table 3 shows that DeepGOA_Seq out-
performs DeepGOA_MultiCNN and DeepGOA_Bi-LSTM, 
which indicates a combination of Bi-LSTM and Mul-tiCNN 
makes a model to extract more effective features than only 
using a single model. In terms of subsequence-based feat-
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Tabel 1. The performance of DeepGOA and comparison to DeepGO and BLAST. 

Method BP CC MF 

Fmax AvgPr AvgRc MCC AUC Fmax AvgPr AvgRc MCC AUC Fmax AvgPr AvgRc MCC AUC 

BLAST 0.314 0.302 0.327 - - 0.362 0.321 0.417 - - 0.372 0.367 0.377 - - 

DeepGO 0.395 0.412 0.379 0.397 0.896 0.633 0.643 0.624 0.592 0.967 0.470 0.577 0.397 0.438 0.928 

DeepGOA 0.422 0.443 0.403 0.420 0.906 0.673 0.684 0.661 0.621 0.976 0.558 0.667 0.480 0.528 0.947 

Tabel 2. Evaluation of DeepGOA, DeepGO, Phylo-PFP, and FFPred3 on the benchmark evaluation dataset of CAFA3. 

Method BP CC MF 

Fmax AvgPr AvgRc MCC AUC Fmax AvgPr AvgRc MCC AUC Fmax AvgPr AvgRc MCC AUC 

FFPred3 0.262 0.304 0.228 0.231 0.828 0.443 0.457 0.430 0.392 0.893 0.376 0.352 0.401 0.293 0.858 

Phylo-PFP 0.256 0.388 0.191 0.186 0.599 0.417 0.409 0.426 0.357 0.724 0.539 0.570 0.512 0.332 0.719 

DeepGO 0.344 0.309 0.365 0.319 0.884 0.521 0.549 0.493 0.497 0.953 0.472 0.614 0.387 0.371 0.902 

DeepGOA 0.369 0.376 0.366 0.373 0.904 0.538 0.582 0.496 0.502 0.953 0.570 0.637 0.521 0.465 0.954 

ures from protein domains, families and motifs, 
DeepGOA_InterPro achieves better results than 
DeepGOA_Bi-LSTM, DeepGOA_MultiCNN, 
DeepGOA_Seq in all assessment metrics in BP and MF 
branches. Second, compared only with using sequence-
based features, DeepGOA_PPI only with topological fea-
tures of the PPI network achieves better performance in 
both BP and CC branches.  
Third, we compare the performance of a combination of 
diverse single component methods. We observe that mod-
els with a combination of diverse single component meth-
ods are better than models with single component meth-
ods in most assessment metrics. For example, 
DeepGOA_Seq_PPI obtains the highest Fmax of 0.673 and 
AUC of 0.977 in the CC branch. However, the results of 
DeepGOA_Seq_InterPro and DeepGOA_InterPro_PPI are 
better than DeepGOA_Seq_PPI in the MF branch except 
for AUC. For example, In terms of  Fmax, AvgPr, MCC in 
MF branch, DeepGOA_InterPro_PPI improves about 
13.2%, 14.7%, 12.1% than DeepGOA_Seq_PPI. Then we ex-
amine the performance of component methods in Table 3 
and DeepGO in Table 1. The results show that 
DeepGOA_PPI, DeepGOA_Seq_PPI and DeepGOA_In-
terPro_PPI outperform DeepGO in terms of all assessment 
metrics. While DeepGOA_Seq_InterPro obviously outper-
forms than DeepGO in MF branch, we observe that 
DeepGO achieves higher results than DeepGOA_Seq_In-
terPro in BP and CC branches.  

DeepGOA, the combination of DeepGOA_Seq, 
DeepGOA_PPI and DeepGOA_InterPro, achieves the 
highest Fmax in BP, CC and MF branches. Furthermore, in 

terms of AvgPr, AvgRc, MCC, and AUC, DeepGOA per-
forms comparably to methods that achieve the highest val-
ues. Table 3 shows other interesting results. For example, 
methods using features from the PPI network outperform 
other methods without considering the PPI network in BP 
and CC branches. The performance of methods with pro-
tein families, domains and motifs perform better than 
other methods. The results indicate that topological fea-
tures provide a better understanding of cellular compo-
nents and the biological process of protein functions. Ad-
ditionally, protein families, domains and motifs are useful 
for predicting molecular functions of proteins. 

4.3 Case studies 
Firstly, we choose one protein (Name: RENT3_ARATH) 

from the benchmark evaluation dataset of CAFA3 to illus-
trate the real effect of the performance of DeepGOA and 
other competing methods in the MF branch. Table 4 shows 
the results. Although Phylo-PFP and DeepGOA predict 
the same number of real functions, Phylo-PFP annotates 
three negative functions. The predictions of FFPred3 con-
tain 3 real functions that are more than DeepGO. However, 
FFPred3 predicts many negative functions. In addition, we 
find GO:0003676 (nucleic acid binding) and GO:0005488 
(binding) are annotated by most methods in Table 4. In 
summary, the results show that DeepGOA performs better 
than other compared methods. Secondly, we choose some 
examples of the results predicted by DeepGOA_PPI, 
DeepGOA_seq, and DeepGOA_InterPro to see which pro-
tein functions that can be easily predicted by sequence or 
PPI features alone. The results are shown in supplemen-
tary Table S4. We find that the sequence features prefer   
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Table 3. The performance of DeepGOA and component methods. 

Method BP CC MF 

Fmax AvgPr AvgRc MCC AUC Fmax AvgPr AvgRc MCC AUC Fmax AvgPr AvgRc MCC AUC 

DeepGOA_Bi-LSTM 0.307 0.316 0.299 0.283 0.824 0.568 0.576 0.561 0.517 0.929 0.355 0.424 0.305 0.320 0.876 

DeepGOA_MultiCNN 0.317 0.335 0.301 0.282 0.816 0.587 0.601 0.573 0.528 0.941 0.385 0.502 0.313 0.348 0.875 

DeepGOA_Seq 0.322 0.343 0.303 0.286 0.824 0.603 0.610 0.596 0.542 0.947 0.415 0.521 0.345 0.383 0.904 

DeepGOA_InterPro 0.354 0.384 0.328 0.338 0.847 0.566 0.596 0.539 0.514 0.926 0.530 0.672 0.437 0.497 0.929 

DeepGOA_PPI 0.417 0.447 0.392 0.427 0.912 0.640 0.650 0.631 0.604 0.973 0.485 0.578 0.419 0.458 0.928 

DeepGOA_Seq_InterPro 0.361 0.394 0.332 0.339 0.854 0.616 0.632 0.600 0.554 0.950 0.512 0.643 0.425 0.481 0.935 

DeepGOA_Seq_PPI 0.420 0.438 0.404 0.418 0.911 0.673 0.686 0.659 0.625 0.977 0.492 0.584 0.426 0.470 0.943 

DeepGOA_InterPro_PPI 0.416 0.446 0.389 0.413 0.899 0.635 0.659 0.612 0.592 0.968 0.557 0.670 0.476 0.527 0.948 

DeepGOA 0.422 0.443 0.403 0.420 0.906 0.673 0.684 0.661 0.621 0.976 0.558 0.667 0.480 0.528 0.947 

Table 4. The prediction of the protein (RENT3_ARATH) with different methods. 

Real label DeepGOA DeepGO FFPred3 Phylo-PFP 

GO:0003674 

GO:0003676 

GO:0003723 

GO:0003729 

GO:0005488 

GO:0044822 

GO:0097159 

GO:1901363 

GO:1901576 

GO:1901661 

GO:1901663 

GO:0003676 

GO:0003723 

GO:0005488 

GO:0097159 

GO:1901363 

GO:0003674 

GO:0005488 

GO:0000166 

GO:0003676 

GO:0003723 

GO:0003779 

GO:0008092 

GO:0008134 

GO:0015631 

GO:0036094 

GO:0097159 

GO:0000166 

GO:0003676 

GO:0003723 

GO:0005488 

GO:0036094 

GO:0097159 

GO:1901265 

GO:1901363 

to common functions while the PPI features are useful for 
both common and uncommon functions. 

5 DISCUSSIONS AND CONCLUSIONS 
Due to the development of high throughput measures, 
there are diverse heterogeneous data that are created, such 
as protein sequences, PPI networks and so on. Many tech-
niques and computational tools have been proposed to 
predict protein functions with various categories of data. 
There are still some challenges for predicting protein func-
tions. Firstly, there are proteins that need to interact with 
neighbor proteins to achieve the functions in many situa-
tions. Secondly, it is not obvious which kind of features is 
efficiently useful for large amounts of proteins. In this 
study, we propose a deep learning model called DeepGOA 
that combines protein sequences and PPI networks. First, 
we represent protein sequences with the word2vec tech-
nique and use one-hot coding to represent information of 
protein domains, families, motifs from InterPro. Second, 
DeepGOA extracts global features and local features of se-
quences, with Bi-LSTM and Multi-scale convolutional year, 
respectively. Moreover, a few fully connected layers are 
used to generate high-quality features of protein domains, 

families, and motifs. Then, DeepGOA combines these fea-
tures to create a comprehensive sequence. Finally, a com-
bination of comprehensive sequence features and topolog-
ical features of the PPI network is fed into the classification 
section of DeepGOA. The source code of DeepGOA is 
available at https://github.com/CSUBi-
oGroup/DeepGOA. 

The results show that DeepGOA outperforms BLAST, 
DeepGO, and FFPred3 in terms of all assessment metrics. 
We observe that our models achieve higher performance 
with topological features from the PPI network in both BP 
and CC branches. Protein domains, families and motifs are 
substantially useful for the prediction of molecular func-
tions. The possible future work is integrating additional 
heterogeneous data, such as gene co-expression [54], pro-
tein structure [55], text mining [56]. It is also possible to 
further improve the performance by effectively using GO 
term information. 
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